

MHC ANTIGENS

RAKESH SHARDA

Department of Veterinary Microbiology

NDVSU College of Veterinary Science & A.H.,

Mhow

DEFINITION

- MHC antigens are cell surface protein molecules coded by genes located as a cluster on a part of gene complex called as 'Major Histocompatibility Complex'.
- Antigens of selfness
- responsible for cell/tissue/organ graft acceptance or rejection depending upon the compatibility of MHC antigens between donor and recipient (Tissue matching – MHC typing)

NOMENCLATURE

Species	MHC	
Human	HLA	
Dogs	DLA	
Bovines (cow)	BOLA	
Swine	SLA	
Equine	ELA	
Chicken	В	
Mouse	H-2/TLA	
	LA=Leukocyte Antigen	

FEATURES

- MHC code for three types of antigens
 - Class I present on all nucleated cells
 - Class II present on APCs (Dendritic cells, Macrophages, B cells, other cells)
 - Class III complement components and sex limited proteins
- MHC molecules are membrane-bound.
- major self antigens which an offspring acquires from both the parents; no two individuals have identical set of MHC antigens, except homozygous twins
- highly polymorphic; alleles for MHC genes are co-dominant

FEATURES (continued)

- Although there is a high degree of polymorphism for a species, an individual has maximum of six different class I MHC products and only slightly more class II MHC products.
- MHC polymorphism is determined only in the germline.
- A processed antigenic peptide must associate with a MHC molecule, otherwise no immune response can occur (MHC restriction).
- Peptide from cytosol associates with class I MHC and is recognized by Tc cells.
- Peptide from vesicles associates with class II MHC and is recognized by Th cells.

FEATURES (continued)

- Recognition of processed antigenic peptide associated with a MHC molecule by T cells requires cell to cell contact.
- Each MHC molecule has only <u>one</u> binding site, called as 'agerotope', which can bind to different peptides, but only one at a time.
- Because each MHC molecule can bind many different peptides, binding is termed degenerate
- There are <u>no</u> recombinational mechanisms for generating diversity of agerotope
- Cytokines (especially interferon-γ) increase level of expression of MHC

MHC molecules

MHC CLASS-I ANTIGENS

FEATURES

expressed on surface of all nucleated cells

- recognized by TCR of Tc cells
- CD8 molecule on surface of Tc cells binds to class I MHC-peptide complex
- source of peptide is cytosolic compartment

Structure of Class I MHC

Structure of Class I MHC

 Two polypeptide chains(heterodimer) - a MHCencoded long α chain, and a non-MHC-encoded short β chain called β2 microglobulin

Four regions:

- Peptide-binding region a groove formed from α1 and α2 domains of the α chain
- Immunoglobulin-like region highly conserved α3 domain - site to which CD8 on T cell binds
- Transmembrane region stretch of hydrophobic amino acids spanning membrane
- Cytoplasmic region contains sites for phosphorylation and binding to cytoskeletal elements

Class I MHC - Agerotope

- a "groove" composed of an α-helix on two opposite walls and eight β-pleated sheets forming the floor
- a.a. residues lining groove are most polymorphic
- 8-10 amino acids long peptide can be lodged in groove
- specific amino acid on peptide required for "anchor site" in groove

MHC CLASS-II ANTIGENS

FEATURES

expressed on surface of APCs and thymic epithelium

recognized by TCR of Th cells

 CD4 molecule on surface of Th cells binds to class II: MHC-peptide complex

source of peptide is vesicular compartment

Structure of Class II MHC

Structure of Class II MHC

 Two polypeptide chains, α and β, of roughly equal length (homodimer).

Four regions:

- Peptide-binding region a groove formed from the α1 and β1 domains of the α and β chains site of polymorphism
- Immunoglobulin-like region conserved α2 and β2 domains β2 is site to which CD4 on T cell binds
- Transmembrane region stretch of hydrophobic amino acids spanning membrane
- Cytoplasmic region contains sites for phosphorylation and binding to cytoskeletal elements

Class II MHC Agerotope

• a "groove" composed of an α -helix on two opposite walls and eight β -pleated sheets forming the floor

a.a. residues lining groove are most polymorphic

 Open ended groove which can bind to 13-25 amino acids long peptide, not all of which need to lie in groove

 specific amino acid on peptide required for "anchor site" in groove

Differences between Class-I and II MHC

Characteristic	MHC-I	MHC-II
Location	All nucleated cells	APCs and Thymic epithelium
Structure	Heterodimer	Homodimer
Ag presentation	Tc cells	Th cells
Intracellular source of antigenic peptide presented	Cytosol	Vesicle
Binding CD molecule on T cells	CD8	CD4
Type of binding groove	Closed	Open
Groove forming domains	$\alpha 1$ and $\alpha 2$ domains of α chain	$\alpha 1$ and $\beta 1$ domains of the α and β chains, respectively
Size of peptide that can be accommodated in groove	8-10 aa residues	13-25 aa residues