



#### The Bacterial Cell Wall

RAKESH SHARDA

Department of Veterinary Microbiology

NDVSU College of Veterinary Science & A.H.,

MHOW

# Cell Envelope: Cell Wall

- A rigid cell wall surrounds all eubacterial cells except mycoplasmas
- The structure and function of the bacterial wall is distinctive- it constitutes a hallmark of the prokaryotes
- Unlike the capsule, which is dispensable for survival outside the body of the host, the wall has vital functions.

# Cell Wall: Function

- It protects the cell from mechanical disruption and from being burst by osmotic pressure (the cell interior is hypertonic relative to the environment)
- The wall also provides a barrier against certain toxic chemical and biological agents
- Being rigid, it is responsible for the shape of the cell

#### **Cell Wall**

#### **Functions**

- Providing attachment sites for bacteriophage teichoic acids
- Providing a rigid platform for surface appendages
  - flagella, fimbriae, and pili

#### The Cell Wall

Bacteria may be conveniently divided into two further groups, depending upon their ability to retain a crystal violet-iodine dye complex when cells are treated with acetone or alcohol. This reaction is referred to as the <a href="Gram reaction">Gram reaction</a>: named after Christian Gram, who developed the staining protocol in 1884.



**Gram Positive** Gram Negative

#### **Bacterial Cell Wall**



#### The cell wall of Gram-positive bacteria is composed of:

- >Peptidoglycan; may be up to 40 layers of this polymer
- >teichoic and teichuronic acids surface antigens

#### The cell wall of Gram-negative bacteria is complex and consists of:

- **>**a periplasmic space − enzymes
- ➤ An inner membrane one or two layers of peptidoglycan beyond the periplasm
- **>Outer membrane (LPS) external to peptidoglycan**
- **▶**Braun's lipoproteins anchoring outer membrane to inner
- >Porins through which some molecules may pass easily.

#### **Gram-Positive Cell Wall**



#### Gram Positive Cell Wall:

- The Gram-positive cell wall contains two major components
  - peptidoglycan and
  - teichoic acids
  - there are also additional carbohydrates and proteins depending on the species of organism
- The Gram positive cell wall is much thicker than that of Gram negative cells

#### Structure of a Gram-Positive Cell Wall



### Peptidoglycan

- single macromolecule
- highly cross-linked
- surrounds cell
- provides rigidity

# Gram Positive Cell Wall: Peptidoglycan

- The chief component of the Gram positive cell wall is murein, a peptidoglycan, which is found nowhere except in eubacteria
- Murein consists of a linear glycan chain (1:4 linkages) of two alternating sugars:
  - N-acetylglucosamine (NAG)
  - N-acetylmuramic acid (NAM)

#### **PEPTIDES**

#### There are two types of peptide chains:

- 1. A tetra peptide side chain linked to N-acetyl-muramic acid and containing the common amino acids L-alanine and L-lysine and the unusual amino acids D-glutamic acid, D-alanine and meso-diaminopimelic acid (DAP).
- 2. A penta-glycine bridge in Gram –positive bacteria, such as *Staphylococcus aureus*, linking the linear peptide / polysaccharide chains to form a 2-D network.

# NOTE: Muramic acid, D-amino acids, and diaminopimelic acid are not synthesized by mammals

- **L**-alanine
- D-glutamic acid
- L-lysine/Diaminopimelic acid





In many Gram-negative bacteria the tetra peptide side chains are cross linked directly via a covalent peptide bond between the carboxyl- group of the terminal D-alanine and aminogroup of L-lysine or meso-diaminopimelic acid without the involvement of a separate penta-glycine bridge.



# Gram Positive Cell Wall: Teichoic Acid

- Some teichoic acid is covalently linked to:
  - NAM residues of the murein or
  - a glycolipid in the underlying cell to form lipoteichoic acid
    - plays a role in anchoring the wall to the cell
- Teichoic acids are found only in Gram positive cells and constitute the major antigenic determinants of the cell surface

### **Gram Positive Cell Envelope**

- Teichoic acid
  - Polymer
  - phosphorus
  - ribitol or glycerol backbone

Teichuronic acid

- polymer
- no phosphorus
- glucuronic acid backbone

## Gram Negative Cell Wall:

- The Gram negative cell wall, except for the presence of a limited amount of murein, has little chemical resemblance to cell walls of Gram positive bacteria
- The architecture of the Gram negative cell wall is fundamentally different

#### **Gram-Negative Cell Wall**



#### The Gram-negative cell wall is composed of:

- >periplasmic space
- >peptidoglycan (thin layer)
- >Braun's lipoproteins
- >Lipopolysaccahrides
- > Porins

### **Gram-Negative Cell Wall**



# Gram Negative Cell Wall: Periplasm

- The proteins in solution in the periplasm consist of:
  - enzymes with hydrolytic functions (such as alkaline phosphatase)
  - antibiotic-inactivating enzymes
  - various binding proteins with roles in chemotaxis and in the active transport of solutes into the cell
- Oligosaccharides secreted into the periplasm create an osmotic pressure buffer

#### **Gram Negative Peptidoglycan**

- Only one or two layers
- No pentaglycine bond
- Lesser cross-linking
- Braun's lipoproteins
  - -binds peptidoglycan layer to outer membrane

#### **Outer Membrane**

- major permeability barrier consisting of
  - lipopolysaccharide
  - phospholipids
  - Proteins
    - -Porins

# Gram Negative Cell Wall: Outer Membrane

- In the outer membrane, the inner leaflet consists of ordinary phospholipids, but the outer leaflet consists of a special molecule called lipopolysaccharide (LPS)
- LPS is extremely toxic to humans and other animals and is called endotoxin
- Even minute amounts of LPS can produce fever and shock (Gram-negative shock, or endotoxic shock)

# Outer Membrane: Endotoxin (LPS)

- LPS consists of:
  - lipid A (a phospholipid containing glucosamine rather than glycerol)- this is the toxic component of the endotoxin
  - a core polysaccharide (containing some unusual carbohydrate residues and fairly constant in structure among related species of bacteria)
  - O-antigen polysaccharide side chains- the major surface antigen of Gram-negative cells

#### LIPOPOLYSACCHARIDE

Four segments can be differentiated within the lipopolysaccharides:

1. Lipid A — a phospholipd consisting of two molecules of glucosamine which carry three fatty acids anchoring the LPS in the lipid bilayer.

#### 2. R-core:

- ➤ Inner core 3 molecules of 2-keto-3-deoxyoctonate (KDO) and two heptose both linked to phosphoethanolamine.
- > Outer core pentasaccharide of glucose, galactose and GNAc.
- 3. O-side chain (also known as O-antigen), consisting of unusual sugars such as mannose, rhamnose, abequose, fucose, colitose and others.



# Gram Negative Cell Wall: Outer Membrane

- LPS in the outer membrane results in a barrier that blocks the passage of virtually every organic molecule into the cell
- The Gram negative cell must make provision for the rapid entry of nutrients
  - Special proteins, called porins or matrix proteins, form pores through the outer membrane
  - porins allow hydrophilic molecules of <800 MW to diffuse into the periplasm</p>

### Gram positive versus Gram negative wall

| <b>Characteristic</b> | <b>Gram positive</b>   | Gram negative |
|-----------------------|------------------------|---------------|
| Peptidoglycan         | Thick                  | Thin          |
| Tetra peptide         | Most have lysine       | All have DAP  |
| Cross-linkage         | Generally pentapeptide | Direct bond   |
| Teichoic/teichuronic  |                        |               |
| acids                 | +                      | _             |
| Lipoproteins          | -                      | +             |
| Lipopolysaccharide    | -                      | +             |
| Outer membrane        | -                      | +             |
| Periplasmic space     | -                      | +             |
| Polysaccharide        | +                      | +             |
| Protein               | + or —                 | +             |

# Acid fast and related bacteria (mycobacteria, nocardia and corynebacteria)

#### **Acid Fast Cell Wall**

The cell wall of acid-fast bacteria consists of:

- peptidoglycan layer linked to arabinogalactan
- arabinogalactan (D-arabinose and D-galactose) and mycolic acid layers
- mycolic acid layer is overlaid with a layer of polypeptides and free mycolic acids.
- Other glycolipids include lipoarabinomannan and phosphatidyinositol mannosides (PIM).

#### Structure of an Acid-Fast Cell Wall



#### Wall-less forms

#### Wall-less bacteria that don't replicate:

- Result from action of:
  - enzymes lytic for cell wall
  - antibiotics inhibiting peptidoglycan biosynthesis
- non-viable
- spheroplasts (with outer membrane) from Gram negative bacteria
- protoplasts (no outer membrane) from Gram positive bacteria

#### Wall-less bacteria that replicate: L-forms

Naturally occurring wall-less bacteria: Mycoplasmas (viable, replicate)

#### **S-LAYER**

- Some bacteria (e.g. *Bacillus anthracis*) may be covered by a regular arrangement of proteins called as S-layer.
- > S-layer is attached to the outermost portion of their cell wall.
- > composed of either a single protein or glycoproteins, depending upon the species.
- > protect bacteria from harmful enzymes, changes in pH, and the predatory bacterium.
- > can function as an adhesin.
- > may contribute to virulence by protecting the bacterium against complement attack and phagocytosis