Introduction

- A **protozoan parasite** of avian erythrocytes transmitted by the 'blackfly' *Simulium* spp.
- Infection causes the disease **leucocytozoonosis**.
- The parasites were first seen by Danilewsky in 1884 in blood from an owl.
- There are over **100 species** in this genus.
<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Protista</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum</td>
<td>Apicomplexa</td>
</tr>
<tr>
<td>Class</td>
<td>Sporozoea</td>
</tr>
<tr>
<td>Order</td>
<td>Eucoccidiida</td>
</tr>
<tr>
<td>Family</td>
<td>Plasmodiidae</td>
</tr>
<tr>
<td>Genus</td>
<td>Leucocytozoon</td>
</tr>
<tr>
<td>Species</td>
<td>Smithi, Simondi, Caulleryi</td>
</tr>
</tbody>
</table>
Hosts & Vectors

Definitive host
- Ducks
- Turkey
- Geese
- Swans
- Similar waterfowl and Chickens

Vector
Black Fly (Simulium spp)
There are over 100 species in this genus, but the 3 most important species that’ve infected the most common domestic birds are:

- *Leucocytozoon caulleryi* (chickens)
- *Leucocytozoon smithi* (turkeys)
- *Leucocytozoon simondi* (ducks and geese)
Geographic Distribution

• Cases of *Leucocytozoon* have been reported all over, except Antarctica, due to the inability for the vector to survive
Geographical Distribution

- In Thailand, India, Taiwan, Japan, Burma, Sri Lanka, the Philippines, Singapore, Malaysia, Indonesia, China, and Korea, USA, Canada and Africa most cases have been reported.

- Acute outbreaks of leucocytozoonosis have been reported in chickens, turkeys, waterfowl and wild birds worldwide.
Morphology

- Tissue cells are similar to most in apicomplexa
- Gametocytes: 12-14 microns
- Macrogametocytes: red-staining nucleus
- Microgametocytes: pale-staining nucleus
Leucocytozoonosis

- Caused by the blood parasite leucocytozoon, which is found in many water fowl.
- Most important blood parasite of birds and is pathogenic in both domestic and wild birds.
- This represents a serious economic risk.
- If not fatal, an immunity can develop after infection.
Epidemiology

- Can be found wherever both the black fly vector and a host are present.
- Highest rate of infection in the spring
- Very high mortality rate among juvenile birds
Leucocytozoon use Black flies (Simulium species) as their vector and Birds as their definitive host.

Over 100 species of birds have been recorded as hosts to these parasites.

Leucocytozoon does not threaten human populations in terms of potential infection, infected poultry is not pathogenic in humans.

Still, the parasite's economic impact could hurt poultry farmers' revenue as mortality rates are extremely high, especially among young birds.
Transmission in Host

- Leucocytozoon's involves a fly vector (the blackfly) which carries the parasite from one avian host to another.
- When the blackfly vector bites a bird, perhaps around the unfeathered eye area, sporozoites are released in the vector's saliva and into the bird's circulatory system.
Vector & transmission, avian pathology, avian malaria, leucocytozoonosis
Life Cycle

- Sporozoites are injected into the bird when the fly feeds.
- Sporozoites enter hepatocytes and develop into small schizonts.
- Schizonts produce merozoites in 4-6 days.
- Merozoites enter erythrocytes or macrophages.
- In the erythrocyte the merozoites develop into round gametocytes.
- In the macrophages the merozoites develop into megaloschizonts.
- Megaloschizonts divide into primary cytomeres which multiply into smaller cytomeres and finally multiply by schizogony into merozoites.
- Merozoites at this stage will penetrate leukocytes or developing erythrocytes to become elongated gametocytes.
- At this point a non infected fly will feed on an infected bird and ingest the elongated gametocytes.
- The elongated gametocytes become a macrogametocyte (female) and a microgametocyte (male).
- The macrogametocyte and microgametocyte form an ookinete.
- The ookinete penetrates an intestinal cell of the black fly and matures into an oocyst.
- The oocyst produces sporozoites that leave and migrate to the salivary glands of the black fly, thus starting the life cycle over again.
Life cycle of *Leucocytozoon simondi*
Pathogenesis

- Five days post infection:
 - Many schizonts develop in hepatocytes
 - Cells rupture
- Seven days post infection:
 - Megaloschizonts begin to appear in spleen
 - Also appear in Lymph and other tissues
 - Gametocytes accumulate in liver
- 12+ days post infection
 - Hemorrhagic scars from rupturing megaloschizonts
Area of Infection

- Leucocytozoon’s infect the
 - Heart
 - Liver
 - Lungs
 - Spleen
 - Brain
Clinical signs/symptoms

- The majority of birds affected with leucocytozoonosis exhibit no clinical signs.
- Visibly affected show mild to severe signs of anorexia, leukocytosis, weakness, anemia, emaciation, and have difficult breathing.
- Young birds manifest in appetite, weakness, dyspnea, and sometimes death within 24hrs.
Signs in adults appear less abruptly and consist of listlessness and a low mortality rate.

The mortality in adult birds occurs as a result of *debilitation* and increased susceptibility to *secondary infection*.

Granulomatous and lymphocytic lesions are seen in the lungs, heart, brain and peripheral nerves. Large gametocytes can block capillaries of the lungs.
pathology

- Clinical signs
 - Anemia
 - Luekocytosis
 - non-pigmented gametocytes in the blood cells

- Physical signs
 - Thin blood causing tissues to appear pale
 - Both hepatomegaly and splenomegaly are present
Spleen

Lungs

Leucocytozoon in leucocytes
Diagnosis

A diagnosis can be made by
- The demonstration of gametocytes in blood smears.
- **Histopathological** examination of the liver, spleen and brain can show developing megaloschizonts.
- **Necropsy** may reveal an enlarged spleen and liver.
- Since the majority of birds are sub clinically infected with Leucocytozoon, other causes of death must be ruled out even with the presence of Leucocytozoon gametocytes in peripheral blood smears.
Leucocytozoon smithi - gametocyte

This slide shows a typical gametocyte which has distorted the white blood cell into an elongate, elliptical body. Little evidence of the white blood cell morphology remains. Note that no schizonts appear in the blood.
Treatment and Control

- Treatment usually is not effective, control of the Leucocytozoon in domestic avian species has, until recently, been limited to control of the blackfly vector.

- Preventive medication using *Pyrimethamine* (1 ppm) and *Sulfadimethoxine* (10 ppm) combined in the feed controls it.

* Quinine may be useful in early stage before gamatocyte appear
Clopidol (0.0125%–0.025%) controls invertebrate vectors are helpful.

Quinacrine hydrochloride or Trimethoprim/Sulfamethoxazole solution have been used i.e parasitemia is reduced, but the infection is not cleared.

Oral Anti-LEUCOCYTOZOOONOSIS Vaccines based on TRANSGENIC plants.

* Vector repellant and separation of infected bird is useful
Haemoproteus

- Parasites of birds and reptiles (snakes or lizards)
- Sexual phases in insects other than mosquitoes
- Exoerythrocytic schizogony is in endothelial cells
- Merozoites enter the RBC in circulating blood
Scientific Classification

- **Kingdom:** Protista
- **Phylum:** Apicomplexa
- **Class:** Sporozoea
- **Order:** Eucoccidiida
- **Family:** Plasmodiidae
- **Genus:** Haemoproteus
- **Species:** columbae
GENUS INTRODUCTION

• Genus created was by Kruse in 1890
• **Greek**: *Haima* - blood
• *Proteus* - a sea god (who had the power of assuming different shapes)

• Synonyms of *Haemoproteus*:
 • *Halteridium*,
 • *Haemocystidium*

• Intracellular parasites - *erythrocytes*
• Pseudomalaria similarities with *Plasmodium* species
Haemoproteus columbae

- **Host**: Pigeon (*Columba livia*), doves.
- **Vector**: *Pseudolynchia canariensis* - louse flies (*Hippoboscidae*)
Heamoproteus Columbae

- Parasite of pigeons
- Host and vector are ectoparasitic flies that inject sporozoites with the bite
- Merozoites can develop from schizont or the schizont can break up into cytomeres
- At first resemble the ring stages of plasmodium but grow into macro- and microgametocytes in 5-6 days
 - Macrogametocytes have dark brown pigment granules, small nucleus and curves around RBC nucleus
 - Microgametocytes are less curved, less pigment granules and exflagellation results in 6-8 merozoites
H. Columbae

- In the stomach of the fly, oocyte makes many sporozoites that go to the salivary glands, remains infectious over the winter and can infect the young in the spring.

- Usually no sign of disease in pigeons with occasional loss of appetite, lungs congested, some anemia and spleen/liver enlargement.
Morphology

- Gametocyte partially surrounds the cell’s nucleus
- Multiple, refractile, golden-brown particles of hemozoin pigment.
Pseudolynchia canariensis - louse flies (Hippoboscidae)

Figure 1. Hippoboscidae fly detected in *Columba livia* pigeons in Lages, state of Santa Catarina, Brazil.
Life cycle

salivary glands of vector

sporozoite Infective stage bites a new host

Endothelial cells of blood vessels & lung, liver and spleen

asexual reproduction schizonts

Numerous merozoites penetration erythrocytes

Mature either macrogametocytes or microgametocytes

Another blood-sucking insect
Life cycle – cond.

ingested by another blood-sucking insect

sexual reproduction in the midgut of the insect

to produce oocysts

rupture and release numerous sporozoites

invade the salivary gland

subsequent infection for another host
The complex general life cycle of hemoparasitic parasites begins with (A), an infected insect biting a susceptible bird. Separate infectious and developmental stages occur in (B), the bird host, and (C), the insect vectors.
To produce subclinical infections

- Enlarged gizzards.
- Enlargement of the spleen, liver and kidneys
- May appear chocolate-brown due to hemozoin deposition
- Infected birds may suffer from reluctance to move,
- Ruffled appearance,
- Prostration And Death.
- Include Parasitemia And anemia.
- Large megaloschizonts may be present in skeletal muscles,
- Particularly those of the thighs and back.
Diagnosis

• Peripheral & Cardiac Blood smear examination.

• Liver & spleen impression smear were stained by Giemsa

• It shows a typical Halter shaped Gamonts in RBCs

• PM – Examination
Treatment and Control

- Antimalarial drugs - chloroquine may be useful
- Control
 - By eliminating the vector population
 - Habitat management
 - Application of insecticides
 - Use of ventilation fans